skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Allen, Caley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The composition, orientation, and conformation of proteins in biomolecular coronas acquired by nanoparticles in biological media contribute to how they are identified by a cell. While numerous studies have investigated protein composition in biomolecular coronas, relatively little detail is known about how the nanoparticle surface influences the orientation and conformation of the proteins associated with them. We previously showed that the peripheral membrane protein cytochrome c adopts preferred poses relative to negatively charged MPA-AuNPs. Here, we employ molecular dynamics simulations and complementary experiments to establish that cytochrome c also assumes preferred poses upon association with nanoparticles functionalized with an uncharged ligand, and specifically ω-(1-mercaptounde-11-cyl)hexa(ethylene glycol) (EG6). We find that the display of the EG6 ligands is sensitive to the curvature of the surface—and consequently, the effective diameter of the nearly spherical nanoparticle core—which in turn affects the preferred poses of cytochrome c. 
    more » « less
  2. Abstract The potentials of mean force (PMFs) along the end‐to‐end distance of two different helical peptides have been obtained and benchmarked using the adaptive steered molecular dynamics (ASMD) method. The results depend strongly on the choice of force field driving the underlying all‐atom molecular dynamics, and are reported with respect to the three most popular CHARMM force field versions: c22, c27 and c36. Two small peptides,and 1PEF, serve as the particular case studies. The comparisons between the versions of the CHARMM force fields provides both a qualitative and quantitative look at their performance in forced unfolding simulations in which peptides undergo large changes in structural conformations. We find that ASMD with the underlying c36 force field provides the most robust results for the selected benchmark peptides. 
    more » « less